応急危険度判定基準及び 木造建築物の応急危険度 判定マニュアル

応急危険度判定講習会

第 I 編 応急危険度判定基準

第Ⅱ編 木造建築部の応急危険調査判定マニュアル

使用に際して

本書は、被災建築物応急危険度判定講習会にて 使用することを目的とし、独立行政法人建築研究 所の協力を得て、財団法人日本建築防災協会及び 全国被災建築物応急危険度判定協議会で発行する ものです。

本書の一部あるいは全部を無断複写することは、 法律で定められた場合を除き、著作権の侵害とな ります。

また、何かお気づきの点がございましたら、ご 連絡を事務局まで下さい。

第 [編 応急危険度判定基準

- ●応急危険度判定の経緯 (番外編)
- ●応急危険度判定基準の目的(P.1~2)
- ●適用範囲 $(P.2 \sim 3)$
- $(P.3 \sim 4)$

●用語

- ●調査方法
- $(P.4 \sim 5)$
- ●判定方法
- $(P.5\sim6)$
- ●判定内容による対応 ●判定の変更
- $(P.6 \sim 8)$
- ●記入方法
- $(P.8 \sim 9)$ $(P.11 \sim 13)$
- ●各番号の標準的なつけ方 (P.11~13)

1. 応急危険度判定・被災度区分判定の経緯

1. 応急危険度判定・被災度区分判定の経緯

- 1981年新耐震基準の制定
 - →新築建築物は恩恵を受ける
- 既存建築物の耐震性能の向上のために、耐震診断・ 耐震改修を、全ての建築物に実施できない状況では、 地震後の地震対策が必要
- 1980年 イタリア南部地震で**応急危険度判定の** 必要性の認識(政府、東京都、静岡県の調査報告書)

1. 応急危険度判定・被災度区分判定の経緯

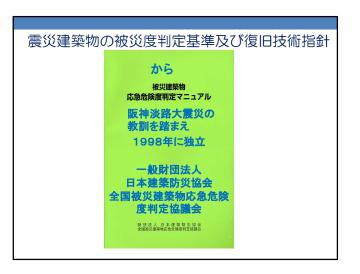
1980年イタリア南部地震

住民の建築物使用の可否の問い合わせ ④応急危険度判定の必要性の認識


1. 応急危険度判定・被災度区分判定の経緯

http://www.kenchiku-bosai.or.jp/oq/oqindex05.htmlより

- ●応急危険度判定:余震による二次災害を防ぐために地震 発生後できるだけ迅速に行われる被災度の判定
- ●過去には、行政担当者、建築士、学識経験者などにより それぞれ独自の判断で個別に行われてきた
- ●判定を独自に行なうのは、経験と直感で被災建物の安全や 危険を短時間に判定しなければならず簡単ではない
- ●災害の規模が小さい時は個別判定でよいが、規模が大きい と判定が必要な建物数も多くなり個別対応では困難
- ●震後の被災建物の危険度の判定を、予め用意されたマニュ アルにより、トレーニングされた技術者により組織的に行うシ ステムの必要性が1980年頃より認識される


	윷度判定∙被災度区分判定の歴	_
年 代	摘 要	実施主体
1980年	イタリア南部地震において応急危険度判定試行	イタリア
1981年	総プロ「震後建築物の復旧技術の開発」の作成	日本
	応急危険度判定、被災度区分判定の原案	日本
1985年	メキシコ地震で上記原案を用いて判定実施	JICA日本チーム
	応急危険度判定の開発開始	アメリカ
	応急危険度判定基準(ATC-20)を作成	アメリカ
1989年	ロマプリエータ地震で応急危険度判定の適用	アメリカ(サンフランシスコ
1991年	震災建築物等の被災度判定基準および復旧技術 指針の発刊	日本建築防災協会
1992年	応急危険度判定士制度の発足	静岡県、神奈川県
1994年	ノースリッジ地震において応急危険度判定の実施	アメリカ(ロスアンセ・ルス 市、サンタモニカ市)
	三陸はるか沖地震において被災度判定の試行	八戸市
1995年1月	兵庫県南部地震において応急危険度判定の実施	神戸市他

応急危険	後度判定・被災度区分判定の経緯	
た急危隊	験度判定・被災度区分判定の歴	史
年 代	摘要	実施主体
1980年	イタリア南部地震において応急危険度判定試行	イタリア
1981年	総プロ「震後建築物の復旧技術の開発」の作成	日本
	応急危険度判定、被災度区分判定の原案	日本
1985年	メキシコ地震で上記原案を用いて判定実施	JICA日本チーム
	応急危険度判定の開発開始	アメリカ
	応急危険度判定基準(ATC-20)を作成	アメリカ
1989年	ロマプリエータ地震で応急危険度判定の適用	アメリカ(サンフランシスコ
1991年	震災建築物等の被災度判定基準および復旧技術 指針の発刊	日本建築防災協会
1992年	応急危険度判定士制度の発足	静岡県、神奈川県
1994年	ノースリッジ地震において応急危険度判定の実施	アメリカ(ロスアンセ [*] ルス 市、サンタモニカ市)
	三陸はるか沖地震において被災度判定の試行	八戸市
1995年1月	兵庫県南部地震において応急危険度判定の実施	神戸市他

忆急危险	検度判定∙被災度区分判定の歴	史
年 代	摘 要	実施主体
1980年	イタリア南部地震において応急危険度判定試行	イタリア
1981年	総プロ「震後建築物の復旧技術の開発」の作成	日本
	応急危険度判定、被災度区分判定の原案	日本
1985年	メキシコ地震で上記原案を用いて判定実施	JICA日本チーム
	応急危険度判定の開発開始	アメリカ
	応急危険度判定基準(ATC-20)を作成	アメリカ
1989年	ロマプリエータ地震で応急危険度判定の適用	アメリカ(サンフランシス
1991年	震災建築物等の被災度判定基準および復旧技術 指針の発刊	日本建築防災協会
1992年	応急危険度判定士制度の発足	静岡県、神奈川県
1994年	ノースリッジ地震において応急危険度判定の実施	アメリカ(ロスアンセ [*] ル) 市、サンタモニカ市)
	三陸はるか沖地震において被災度判定の試行	八戸市
1995年1月	兵庫県南部地震において応急危険度判定の実施	神戸市他

心急危险	検度判定∙被災度区分判定の歴	史
年 代	摘要	実施主体
1995年12月	新潟県北部地震において応急危険度判定の実施	新潟県笹神村
1996年4月	全国被災建築物応急危険度判定協議会設立	(以下「全国協議会」)
1996年8月	宮城県北部地震において応急危険度判定の実施	鳴子市
1997年 3月、5月	鹿児島県薩摩地方を震源とする地震において応急 危険度判定の実施	鹿児島県宮之城町、 鶴田町
1998年1月	被災建築物応急危険度判定マニュアルの発刊	日本建築防災協会 全国協議会
1998年7月	民間診断士に対する補償制度を運用開始	全国協議会
1999年9月	初めて全国規模での連絡訓練を実施	全国協議会
1999年9月	トルコ・マルマラ地震において、建築物危険度診断 (応急危険度判定)専門家が派遣され、危険度診断 実施に関する技術支援を実施	建設省、兵庫県、大阪府等
1999年10月	台湾・集集地震において、建築危険度判定(応急危 険度判定)専門家が派遣され、危険度診断実施に 関する技術支援を実施	建設省、兵庫県、大阪府等

1. 応急	危険度判定・被災度区分判定の経緯	
応急	危険度判定・被災度区分判定の歴り	史
年 代	摘 要	実施主体
2000.12	鳥取県西部地震において応急危険度判定の実施	米子市、境港市他
2001.3	芸予地震において応急危険度判定の実施	広島市、呉市他
2001.9	震災建築物の被災度区分判定基準および復旧技術指 の改定	日本建築防災協会
2003.7	宮城県北部地震において応急危険度判定の実施	宮城県矢本町、 鳴瀬町他
2004.10	新潟県中越地震において応急危険度判定の実施	長岡市、小千谷市他
2005.3	福岡県西方沖地震において応急危険度判定の実施	春日市他
2007.3	能登半島地震において応急危険度判定の実施	七尾市、輪島市他
2007.7	新潟県中越沖地震において応急危険度判定の実施	柏崎市、出雲崎市、 刈羽村他
2011.3	東北地方太平洋沖地震等において応急危険度判定実施	仙台市他
2016.4	熊本地震において応急危険度判定実施	熊本市他
2016.10	鳥取県中部地震において応急危険度判定実施	倉吉市、三朝町 湯梨浜町、北栄町

1. 応急危険度判定・被災度区分判定の経緯 応急危険度判定基準の目的

(テキスト p.1∼2)

地震等により被災した建築物について

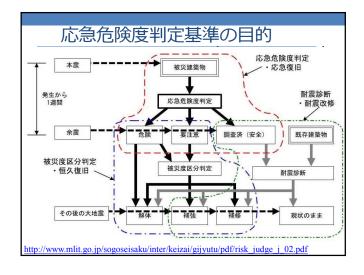
- ①余震等による倒壊や落下物の危険性を判定
- ②被災建築物の使用にあたっての危険性に関する情報を提供
- ③人命に関わる二次災害を防止

応急危険度判定基準の目的

[解説のポイント(1)] (テキストp.1~2)

- ・建築物の安全性を確保する第一義的責任は 所有者(管理者・占有者)
- ・地震被害が大きい、多数の所有者がいる建築物 →所有者が安全性を確認できる保証はない
- ・余震等による二次災害の恐れ、第三者への被害

市町村が、地震発生直後の**応急対応の一環**として 被災建築物の判定を**応急的に実施**


応急危険度判定基準の目的

[解説のポイント(1)] (テキスト p.1~2)

●応急危険度判定

災害対策本部内に設置された被災建築物応急 危険度判定実施本部により、建築物等に対して 行われる建築技術の専門的見地による応急的な 調査及び情報提供等の対応。従って、恒久復旧 に向けての判定ではない

(参考)被災度区分判定基準 被災による損害額の査定・被災建築物の恒久的 使用の可否の判定等の目的で実施

応急危険度判定基準の目的

「解説のポイント(2)] (テキストp.1~2)

- ・判定の性格上、本基準としては、あくまで余震は本震より小さいものとして危険度を判定 (過去の地震において例外は複数ある)
- ・余震等によって破壊が進展し、危険度の判定が 変更される可能性がある事態が発生した場合は、 再度応急危険度判定を実施すること

応急危険度判定基準の目的

[解説のポイント(3)] (テキストp.1~2)

- ・応急危険度判定では、余震以外の現象に起因する 建築物の崩壊の危険性についても注意する
- (例)・傾斜地の建築物
 - ⇒地割れ等に降雨による雨水が浸透する ことによる斜面崩壊の危険
 - ・被災直後における台風・降雪の影響 ⇔風荷重、雪荷重

応急危険度判定基準の目的

[解説のポイント(4)] (テキストp.1~2)

- ・被災後に避難所として使用される施設:
 - →安全性の検討はより慎重・細部にわたり 実施する必要

(構造体+ライフライン等の安全性・使用性)

*本基準:<mark>外観調査</mark>に重点を置いた応急的な 危険度判定

適用範囲

(テキスト p.2~3)

- ●地震被害を受けた通常の、W造、S造、RC及びSRC造
- ●判定方法は構造種別ごと
- ●危険物貯蔵庫は適用外

適用範囲

[解説のポイント (1)] (デキスト p.2~3) <本基準>

- ●本震後の余震等による倒壊等の危険性を判定 するもの
- ●その他の原因によって被害を受けた建築物の 危険度判定には原則適用しない。 (例) 強風を受けた建物の危険度判定
- ●地震被害後の強風による影響については検討

適用範囲

[解説のポイント(2)] ^{(テキスト p.2~}3)

-在来の通常構法によっていない建築物は**対象外**

(例) 10階を超える建築物

大スパン、立体トラス、吊り構造等

補強コンクリートブロック造 プレキャストコンクリート造 (接合部を柱と読み替え判定)

RC造の調査票

プレファブ構法、枠組壁工法 伝統工法

基準の精神を汲み取り慎重

混構造⇒構造種別毎に判定⇒結果に基き総合判定

3. 用語

(テキスト p.3~4)

応 急:**暫定的+緊急**

危険度:構造躯体の危険

+建築物の部分等の落下・転倒の危険

「危険」,「要注意」,「調査済」

被災度 :破壊または変形している度合い

(被害の小さい順に)A,B,C

損傷度: RC, SRC部材の破壊の程度

(破壊の小さい順に)レベルⅠ, Ⅱ, Ⅲ, Ⅳ, Ⅴ

3. 用語

[解説のポイント]

(テキスト p.3~4)

「応 急し

●緊急性

被害を生じさせた地震の直後に短時間に多くの 判定をしなければならない意味

●暫定性

判定には必ずしも十分な調査検討がなされない ため、後に十分な時間をかけて被害調査が行わ れた場合に判定結果が異なる場合がある意味

3. 用語

[解説のポイント]

(テキスト p.3~4)

「調査済」

- ・建築物の恒久的な使用を保証している誤解を 生むことがないよう「安全」ではなく「調査済」
- ・外観調査を主とした限られた範囲の応急危険度 判定では、建築物の「安全」を保証できる程の 調査判定が行われているわけではなく、調査し た内容の中に「危険」又は「要注意」とする要 因がないことを確認しているのみ

4. 調查方法

(テキスト p.4~5)

- ●調査を実施するのは有資格者(判定士)
- ●主として外観目視による 外観で被害が観られない場合→内観も実施
- ●簡単な計器等を使用
- ●判定調査表を用いる

4. 調查方法

[解説のポイント] (テキスト p.4~5)

- (1)調査を実施するのは有資格者(判定士) 技術講習を受講、都道府県に登録された建築技術者
- (2) 主として外観目視による
- 外観で被害が観られない場合→内観調査も実施
- ・所有者に対するヒアリングに基づく調査も可能
- (3) 簡単な計器等を使用

コンベックス、下げ振り、クラックスケール等

*調査の際持参すべき機材: テキストP.94参照

4. 調査方法

[解説のポイント]

(テキスト p.4~5)

- (4) 構造種別がわからない
- (例) RC? or SRC? ⇒ 8F以上ならSRCと判断

S? or RC? ⇒ 打撃音で判断

W?orS? ⇒ 屋根形状で分からない

なら木造

5. 判定方法

(テキスト p.5~6)

1. ①建築物と②落下物に分けて危険度を判定

<注>判定基準は構造種別で微妙に異なる

①建築物の危険度 : 危険,要注意,調査済

②落下転倒物の危険度:危険,要注意,調査済

構造別 危険度判定の基準 (テキスト p.5~6) 調査済 要注意 危険 ・Cランク有り W ・Bランク有り ・Aランクのみ ・Cランク有り S ・構造躯体等 ・Aランクのみ ・構造躯体等 Bランクく4個所 Bランク≧ 4 個所 ・落下物等 Bランク有り ・Cランク有り ・構造躯体 ・Aランクのみ RC Bランク < 2 個所 · 構造躯体等 Bランク≥2個所 Bランク有り 落下 Cランク有 Aランクのみ Bランク有 転倒物

6. 判定内容による対応

(テキスト p.6~7)

- ●判定ステッカーの貼付
- ・建築物の所有者,使用者,及び第3者に危険を分かり易く知らせる
- ・ 危険の喚起
- ・危険な範囲、注意事項(わかりやすく記載)
- ・口頭で済む場合もあり。
- ・建築物が極めて危険な状態、第3者に危険な場合は行政上の措置が取られることも

6. 判定内容による対応

(テキスト p.6~7)

●貼付場所

建築物の危険:出入り口の目立つ場所

落下物, 転倒物の危険:

危険個所付近の目立つ場所

7. 判定の変更

(テキスト p.8~9)

- ●危険を防ぐ為の有効な手段が講じられた場合
- ●詳細な調査により、判定結果が変わった場合
- ●余震等で被災状況が変わった場合

応急危険度判定:短時間に行うもの

- ・後に詳細調査が実施された場合、当初の 判定と異なる判定となる場合
- ・新たに危険個所が発見される場合
- ・危険と判断したものが、さほど危険でない 事が判明する場合

第Ⅱ編

木造建築部の応急危険調査判定マニュアル

第Ⅱ編木造建築部の応急危険調査判定マニュアル

●記入方法 (P.15~17)

●建築物概要 (P.15~17)

●調査 (P.17~18)

●一見して危険 (P.18~19)

●隣接物・周辺地盤・構造躯体 (P.20~28)

●落下危険物・転倒危険物 (P.29~32)

●総合判定 (P.32~33)

記入方法 (テキスト p.11~13)

· 左側:調査欄

・右側:集計欄

・調査項目はゴシック体

・調査票:電算入力を前提入力しやすい形式

・電算入力の際、見るのは 集計欄。集計欄だけ記入 すれば済むところだが、 誤記入が多くなる。

・調査欄も使用する方が 誤りが少なくなる。

記入方法 (テキスト p.11~13)

- 1)調査欄の該当番号に あるいは数字を記入
- 2)集計欄の数字で転記 当てはまるものが ないときはレ印

各番号の標準的な付け方

- ●原則は災対本部の指示に従い記入
- ●整理番号の例:調査グループ名+グループが処理した順番 (例)グループ名=7、調査した12番目の建物→「7-12」
- ●調査表の整理番号を、配布される地図帳の当該被災建物 位置に転記しておくと、後日、場所の確認が容易

調査表住宅地図整理番号
建築物番号
住宅地図整理番号7-12
15
2015
2015
2015
2015
2015
2015
2020と15は住宅地図に印刷されている数値あるいは記号

木造建築物の応急危険度判定調査表

 木造建築物の応急危険度判定調査表

 整理番号
 両条日時
 月 日午前・午辰
 時 頁条日数
 同日

 関本有氏名(高油府県/No)

<調査日時>

- ・対象建物に到着し、調査を**開始した**時刻。時間単位で記入、分は省略(例:午前11時35分⇒午前11時) <調査回数>
- ・初めての調査時⇒記入しない

二回目以降、その調査回数記入。

古いステッカー:必ず持ち帰り、災害対策本部に渡す <調査者氏名>

- ・下線部に氏名、都道府県、判定士認定番号の順に記入
- ・チーム数が3名以上⇒余白に追記
- ・氏名はイニシャル等でも良いが、認定番号は正確に

木造建築物の応急危険度判定調査表

建物概要

<建物名称>

- ・住宅地図等に記載された建築物名称を記入。
- ・正式名称がわかる場合は、それを記入
- ・個人住宅:所有者氏名を記入
- ・1つの敷地に複数の建築物がある場合
- ⇒それぞれ異なる整理番号を付け、別の調査表に記入
- ・建物名称には「~の住宅(倉庫)」等、区別できるように記入。

木造建築物の応急危険度判定調査表

<1.1 建物物番号>

- ・建築物番号が定められている場合はそれを記入
- ・その他の場合は配布された住宅地図に記載された 建築物の番号を記入

く2 建築物所在地>

・字名地番を記入。市区町村名は省略

木造建築物の応急危険度判定調査表

<2.1 住宅地図整理番号>

・配布された住宅地図等の番号を記入

<3 建築物用途>

- ・テキストP.16に、分類が難しいものの分類例が有る
- ・どの項目にも該当しない ⇒「その他」、() に記入

< 4 構造形式>

- ・主たる構造形式を判断して記入。
- ・木造で工法が区別できない場合は在来構法

木造建築物の応急危険度判定調査表

<5 階数>

- ・調査対象建物の被災前の階数を記入。
- ・判別できない場合⇒可能な範囲で推定し、集計欄の 数値の右に?を付ける。(例:3?)

<6 建築物規模>

- ・1階寸法を目分量で推定して記入。窓が大体90cm
- ・実測上の危険なく、時間的余裕がある場合は測定。
- ・原則、間口方向「ア」、奥行「イ」。円形・不整形 平面は外接する方形を想定。破壊が激しい場合「×」

木造建築物の応急危険度判定調査表:調査

<調査方法>

- ・全ての物件について外観調査を行う。外観調査の結果 調査済⇒原則、内観調査も実施(所有者の許可必要) 要注意⇒必要に応じ、入西観調査も実施(")
- 危 険⇒内観調査の必要無し(危険、調査時間短縮)
- ・災害対策本部から「外観調査のみ」と指示があれば それに従う
- ・内観調査:使用者のヒアリングでもOK。A,Bランクで 内観調査ができない場合は、コメント欄に「外観調査 のみ」と記入

木造建築物の応急危険度判定調査表:調査

調査票:「一見して危険」

(手順)

- ・ある程度離れた位置から、明らかに危険ではないか を判断
- ・最も損傷の激しい箇所を把握しておく。

(解說)

・明らかに危険な場合、接近してまで調査する必要は ない。判定者の安全が第一。

木造建築物の応急危険度判定調査表:調査

調査票:「一見して危険」 (解説:続き)

・一見して危険にあたるケースで、表中の3項目に 該当しない場合は「4. その他」に記入。

(「4.その他」の例)

「対象建築物の背後に崩壊の危険性を有する斜面有り」 「建築物の敷地が崩壊の危機を有している場合」

・一見して危険に該当⇒「危険(赤)」に○。調査終了。 「2. 隣接建築物・・」、「3. 落下危険物・・」の 調査の必要なし。コメント欄に理由を具体的に記入。

-見して危険と判断される

元は3階建の建物。1FRC(CB?)造、上階W造

一見して危険と判断される 写真-2

2階建店舗併用住宅。1階崩壊。

木造建築物の応急危険度判定調査表

2 隣接建築物・周辺地盤等及び構造軀体に関する危険度 D隣接建築物・周辺地盤の 1.危険無し 破壊による危険

- ①隣接建築部・周辺地盤の破壊による危険
- ●調査対象建築物のある敷地の危険性について判定。
- 例)隣接建築物が傾き、敷地に倒れ込む可能性がある 例)隣接する斜面、がけ等が崩壊して敷地に影響を及 ぼす危険がある
- ●当該建物敷地ががけの頂部に位置している場合等で、 周辺地盤に生じている亀裂等によりがけの崩壊の危 険性が認められる場合についてもランク区分を行う
- ●被害を受けそうだが危険性の程度が不明⇒Bランク

木造建築物の応急危険度判定調査表

2 隣接建築物・周辺地盤等及び構造軀体に関する危険度 Aランク Bランク Cランク 隣接建築物・周辺地盤の 破壊による危険 ②構造軀体の不同沈下 1.無し又は軽微 2.著しい床、屋根の落ち込 3.小屋組の破壊、床全体の み、浮き上がり

- ②構造躯体の不同沈下*
- ●建築物の倒壊の危険性を、地盤の不同沈下や構造 躯体の受けた損傷により生じる不同沈下により判定
- *「構造躯体の不同沈下」 地盤の沈下に伴う構造骨組の部分的又は全体的な 損傷により、屋根、小屋、土台等が上下方向に一 様でない変形をしている状況

写真-3 建築物の不同沈下

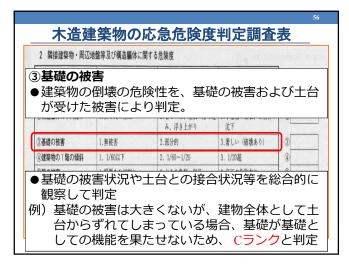
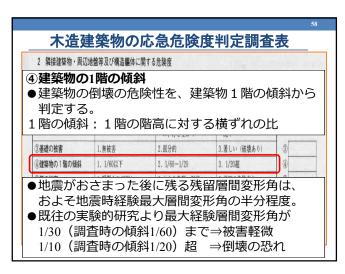
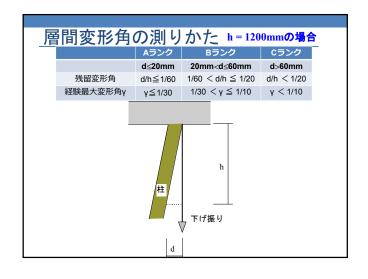

床板を見ても**殆ど傾斜が見られない**: Aランク

写真-4 建築物の不同沈下




- ●建物の不同沈下は床だけでなく屋根にも現れる
- ●軒先の線・棟の線が写真程度現れた場合: B

木造建築物の応急危険度判定調査表

④建築物の1階の傾斜(補足)

建具・窓ガラスの被害からの最大層間変形角推定

- ・何らかの原因で、最大層間変形角が大きいのに 調査時の傾斜が低い場合がある
- ・しかし、一旦層間変形角が大きくなった場合、 内外壁の損傷及び窓等の建具の被害が発生する
- ・そこで、調査時の傾斜角が低くても、内外壁の 損傷状況、建具等の被害状況から最大層間変形 角が大きかったと予測される場合は、**計測した 傾斜角でなく被害状況から推測して良い**

写真-7 建築物の1階の傾斜

左側:ほとんど傾斜無し。2階の一部を支えているとかられる玄関付近、右側が大きく傾斜

写真-8 建築物の1階の傾斜

1階全体が多く傾斜: Cランク

木造建築物の応急危険度判定調査表

⑤壁の被害

- ●建築物の倒壊の危険性を、壁の被害から判定
- ●外壁または内壁で、被害の大きい方で判定。 外観調査のみの場合は外壁のみ。

Aランク:ひび割れがない、又は僅かなひび割れ

Bランク:湿式壁の大きな亀裂・剥落。 乾式壁の亀裂や剥落。

| <u>S屋の被害</u> 1.軽微なひび割れ 2.大きな亀裂、刺落 3.落下の危険有り | 1.ほとんど無し 2.一部の新面な相 3.落しい新面な相

Cランク:外壁面全体に渡って大きな亀裂・剥落・破壊が見られる。建物躯体の損傷が明瞭なもの

TIMPEL D D

写真-9 壁の被害(外壁)

モルタル壁の大きな剥落(**この面のみ**)⇒ Bランク

写真-10 壁の被害(内壁)

湿式壁の大きな亀裂・一部剥落(この面のみ): B

写真-11 壁の被害(外壁)

モルタル壁の大きな剥落 (**この面のみ**) ⇒ Bランク

写真-13 壁の被害(外壁)

湿式壁であるモルタル壁

- ・2階部分がほとんど全部
- ・3階部分も大きな剥落
- ・1面の5割以上が剥落

⇒Cランク

木造建築物の応急危険度判定調査表

⑥腐食・蟻害の有無

- ●建築物の倒壊の危険性を、腐食・蟻害の有無から 判定。
- ・阪神・淡路大震災での被害状況を教訓に新設 (例)壁の被害はBランクだが、柱や土台に腐食・ 蟻害による大きな断面欠損があり、余震等に より被害が進行する可能性が高い場合が該当

	⑤壁の被害	1.軽微なひび割れ	2.大きな亀製、剝落	3.落下の危険有り	5	
ĺ	⑥腐食・蟻害の有無	1.ほとんど無し	2.一部の断面欠損	3.著しい断面欠損	6	
•	危険度の判定	1.調査済み	2.要注意	3.危険	判定	
Í	無被害の建	築物:腐食	・蟻害のみ	でBまたは	Cとする	,

無被害の建築物:腐食・蟻害のみでBまたはCとする 必要はない

木造建築物の応急危険度判定調査表

⑥腐食・蟻害の有無(補足)

- ・建築物の土台、1階の柱などで、観察できる場合に判定。
- ・腐食や蟻害がある場合、ドライバー等で損傷部を刺して被害状況を把握することが好ましいが、 一見して明らかな場合、危険性が伴う場合等は 目視のみで判定しても良い。

外壁モルタルが落下して下地が確認できた。著しい 土台の蟻害。腐食・蟻害の有無は cランク

写真-15 蟻害

筋かい端部が蟻害により 失われている例。 腐食・蟻害の有無としては Cランク

木造建築物の応急危険度判定調査表 2 隣接建築物・周辺地盤等及び構造軀体に関する危険度 Aランク D隣接建築物・周辺地盤の 1. 依除無し 破壊による危険 ②構造組体の不同決下 1.無し又は軽微 2.著しい床、屋根の落ち込 3.小屋組の破壊、床全体の 3基礎の被害 1.無被害 2.部分的 3.著しい (破壊あり) ①建築物の1階の傾斜 1. 1/60以下 2. 1/60~1/20 3. 1/20超 ③壁の被害 1.軽微なひび割れ 2.大きな亀製、剝落 3.落下の危険有り 2.一部の断面欠損 3.著しい断面欠損 ⑥腐食・蟻害の有無 1.ほとんど無り 1.調査済み 2.要注意 全部Aランクの場合 (要 Bランクが1以上ある場 . 危険 C ランクが 1 以上ある場

木造建築物の応急危険度判定調査表

	Aランク	Bランク	Cランク	
0E	1.ほとんど無被害	2.著しいずれ	3.全面的にずれ、破損	0
②窓枠・窓ガラス	1.ほとんど無被害	2.歪み、ひび割れ	3.落下の危険有り	2
③外装材 温式の場合	1.ほとんど無被害	2.部分的なひび割れ、隙間	3.顕著なひび割れ、剝離	3
①外装材 乾式の場合	1.目地の亀製程度	2.板に隙間が見られる	3.顕著な目地ずれ、板破壊	4
⑤看板・機器類	1.傾斜無し	2.わずかな傾斜	3.落下の危険有り	6
⑥屋外階段	1.傾斜無し	2.わずかな傾斜	3.明瞭な傾斜	6
⑦その他()	1.安全	2.要注意	3. 危険	0
危険度の判定	1.調査済み 全部 A ランク	2.要注意 Bランクが1以上ある場合	3.危険 Cランクが1以上ある場合	判定

- ・落下物、転倒物による危険性で判断。
- ①~⑥の6項目。それ以外で危険性がある場合、 ⑦その他に記載。

「最も危険性が高いものは?」という視点で判断

木造建築物の応急危険度判定調査表

3. 落下危険物・転倒危険物に関する危険度

- ・屋根材、外装材、窓ガラス、設備機器とそれらの取付金物等、それぞれについて、目視等で 状況を確認し、損傷度が大きくかなり危険な ものと、ほとんど被害の無いもの、それらの 中間のものとに被害ランクを区分。
- ・屋外階段の損傷状況も建築物全体の損傷度を 知る大きな指標となるので、設置されている 場合は必ず調査。

木造建築物の応急危険度判定調査表

3. 落下危険物・転倒危険物に関する危険度

- ・次のような場合、被害は受けているが、危険は なくなっているのでAランクとする。
- 1) 外壁が破壊しているが、全て落ちて落下するものがない
- 窓ガラスが割れ落下しそうだが、バルコニー があって下階には被害が及ばない。
- 3)安定が悪いものがあるが、既に転倒していて もう転倒する可能性がない
- ・庇等により完全には防止できないが、危険性が かなり減少する場合は、Bランク

木造建築物の応急危険度判定調査表

3. 落下危険物・転倒危険物に関する危険度

<判定基準>

- ・Aランク:明らかに危険性がないと考えられる
- ・Bランク:被害の危険性がCランクに比べ相対的 に低い場合、または予測される被害が 比較的軽い場合。
- (例) 窓ガラスが何枚か割れ、余震により類似の窓ガラスの損傷による危険が高い場合。 既に同種の転倒物がかなり倒れていて、 余震による転倒の危険が高い場合

木造建築物の応急危険度判定調査表

3. 落下危険物・転倒危険物に関する危険度

<判定基準>

・Cランク: 既に傾いている、又は支持するものが かなり壊れていて落下する危険性が高い 場合

> 転倒物については、支持するボルト等が 破断している場合や、既に傾斜していて 転倒の危険性が高い場合。

> とにかく、落下や転倒に対する危険性が 高い場合

木造建築物の応急危険度判定調査表

	Aランク	Bランク	Cランク	
DA	1.ほとんど無被害	2.著しいずれ	3.全面的にずれ、破損	0
②窓枠・窓ガラス	1.ほとんど無被害	2.歪み、ひび割れ	3.落下の危険有り	2
③外装材 温式の場合	1.ほとんど無被害	2.部分的なひび割れ、隙間	3.顕著なひび割れ、剝離	3
①外装材 乾式の場合	1.目地の亀裂程度	2.板に隙間が見られる	3.顕著な目地ずれ、板破壊	3
⑤看板・機器類	1.傾斜無し	2.わずかな傾斜	3.落下の危険有り	3
公居以際 位	1 経効量 (りもずみた何は	2 1986 6 8601	(2)

外装材(湿式): 土壁、漆喰壁、モルタル壁、

タイル張


外装材(乾式):木板、金属板、金属系・窯業系

サイディング、石膏ボード、 下見板、羽目板、ベニヤ板等

看板・機器類 : 看板、ウインドクーラー、

屋上に設置されたタンク等

木造建築物の応急危険度判定調査表

写真-16 落下危険物(瓦)

若干、瓦の移動が見られるが、特に 落下しそうなものは見られない。Aランク

写真-17 落下危険物

本屋根の瓦が下屋の方へずれてきて、下屋の 方に固まっている。今にも落ちそうではないが、 安全でもない。Bランク

写真-18 落下危険物

瓦のずれが著しく、今にも落下しそう。 瓦の落下より怪我をする可能性が高い。Cランク

写真-19 転倒危険物(その他:ブロック壁)

ブロック塀が大きく傾いている。写真ではわかり づらいがぐらぐらしている。要注意:Cランク

木造建築物の応急危険度判定調査表

総合判定 (調査の1で危険と判定された場合は危険、それ以外は調査の2と3の大きい方の危険度で判定する。)

1. 調査済 (録)

2. 要注意 (黄)

3. 危険 (赤)

- <総合判定>
- 一見して危険と判定される場合以外は、
- 2. 隣接する建築物・周辺地盤及び構造躯 体に関する危険」
- 3. 落下危険物・転倒危険物に関する危険度
- の調査結果のうち、より危険度の大きい方を選ぶ

コメント欄の記入例(1)

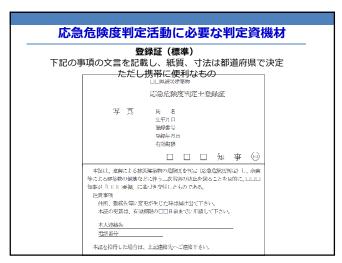
コメント (構造署体等が危険か、落下物等が危険かなどを記入する。)

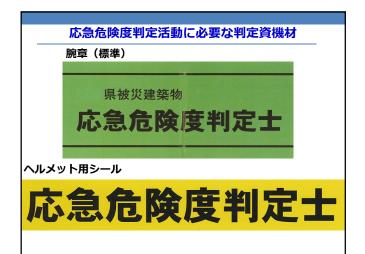
コメントは判定ステッカーの注記と同じとする。

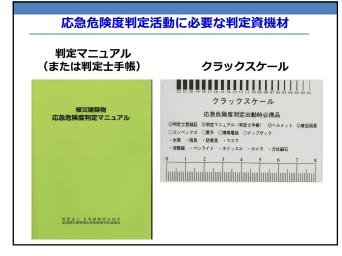
- 〇隣接建築物が倒れ込む危険があります。
- ○擁壁が崩壊し建築物が倒壊するおそれがあり 危険です。
- ○構造躯体である1階の柱が大きな損傷を受けて おり危険です。

コメント欄の記入例(2)


コメント (構造整体等が危険か、落下物等が危険かなどを記入する。)
コメントは判定ステッカーの注記と同じとする。


- ○建築物の基礎構造の破壊により建築物全体が 沈下しており要注意です
- ○屋外看板が落ちかけており危険があります。


立入注意の範囲、ブロック塀等、特に安全上 注意の必要な場合も記入



応急危険度判定活動に必要な判定資機材

・その他

ヘルメット 判定街区マップ 筆記用具 振り下げ ガムテープ (状況によっては 雨具 防寒具 水筒 マスク)

- B: 応急危険度判定時にあった方がよいもの
- ・バインダー(台) コンベックス 軍手 携帯電話 ナップザック
- ・C: 応急危険度判定時にできればあると便利なもの ハンマー(打診器) 双眼鏡 ペンライト ホイッスルカメラ コンパス(方位磁石)